願景與使命
透過整合學術研究、產品研發與產業鏈,推動 PQC 市場發展,
加速量子安全進入產業與日常的資訊環境中。
商業目標
研究
Publication
KyberSlash:
Exploiting secret-dependent division timings in Kyber implementations
This paper presents KyberSlash1 and KyberSlash2 – two timing vulnerabilities in several implementations (including the official reference code) of the Kyber Post-Quantum Key Encapsulation Mechanism, currently undergoing standardization as ML-KEM. We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 microprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2 and a few hours for KyberSlash1.
Publication
Nibbling MAYO:
Optimized Implementations for AVX2 and Cortex-M4
MAYO is a popular high-calorie condiment as well as an auspicious candidate in the ongoing NIST competition for additional post-quantum signature schemes achieving competitive signature and public key sizes.
Publication
Fast and Clean: Auditable high-performance assembly via constraint solving
Handwritten assembly is a widely used tool in the development of high-performance cryptography: By providing full control over instruction selection, instruction scheduling, and register allocation, highest performance can be unlocked. On the flip side, developing handwritten assembly is not only time-consuming, but the artifacts produced also tend to be difficult to review and maintain – threatening their suitability for use in practice.
Publication
pqm4: Benchmarking NIST Additional Post-Quantum Signature Schemes on Microcontrollers
In July 2022, the US National Institute for Standards and Technology (NIST) announced the first set of Post-Quantum Cryptography standards: Kyber, Dilithium, Falcon, and SPHINCS+. Shortly after, NIST published a call for proposals for additional post-quantum signature schemes to complement their initial portfolio. In 2023, 50 submissions were received, and 40 were accepted as round-1 candidates for future standardization.